download patch
commit b43391af051002e23762759c669b4d042a8a7947
Author: tri <tri@thac.loan>
Date: Sat Sep 27 18:00:24 2025 +0700
zig init
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..d8c8979
--- /dev/null
+++ b/.gitignore
+.zig-cache
+zig-out
diff --git a/build.zig b/build.zig
new file mode 100644
index 0000000..121ade4
--- /dev/null
+++ b/build.zig
+const std = @import("std");
+
+// Although this function looks imperative, it does not perform the build
+// directly and instead it mutates the build graph (`b`) that will be then
+// executed by an external runner. The functions in `std.Build` implement a DSL
+// for defining build steps and express dependencies between them, allowing the
+// build runner to parallelize the build automatically (and the cache system to
+// know when a step doesn't need to be re-run).
+pub fn build(b: *std.Build) void {
+ // Standard target options allow the person running `zig build` to choose
+ // what target to build for. Here we do not override the defaults, which
+ // means any target is allowed, and the default is native. Other options
+ // for restricting supported target set are available.
+ const target = b.standardTargetOptions(.{});
+ // Standard optimization options allow the person running `zig build` to select
+ // between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not
+ // set a preferred release mode, allowing the user to decide how to optimize.
+ const optimize = b.standardOptimizeOption(.{});
+ // It's also possible to define more custom flags to toggle optional features
+ // of this build script using `b.option()`. All defined flags (including
+ // target and optimize options) will be listed when running `zig build --help`
+ // in this directory.
+
+ // Here we define an executable. An executable needs to have a root module
+ // which needs to expose a `main` function. While we could add a main function
+ // to the module defined above, it's sometimes preferable to split business
+ // logic and the CLI into two separate modules.
+ //
+ // If your goal is to create a Zig library for others to use, consider if
+ // it might benefit from also exposing a CLI tool. A parser library for a
+ // data serialization format could also bundle a CLI syntax checker, for example.
+ //
+ // If instead your goal is to create an executable, consider if users might
+ // be interested in also being able to embed the core functionality of your
+ // program in their own executable in order to avoid the overhead involved in
+ // subprocessing your CLI tool.
+ //
+ // If neither case applies to you, feel free to delete the declaration you
+ // don't need and to put everything under a single module.
+ const exe = b.addExecutable(.{
+ .name = "khoe",
+ .root_module = b.createModule(.{
+ // b.createModule defines a new module just like b.addModule but,
+ // unlike b.addModule, it does not expose the module to consumers of
+ // this package, which is why in this case we don't have to give it a name.
+ .root_source_file = b.path("src/main.zig"),
+ // Target and optimization levels must be explicitly wired in when
+ // defining an executable or library (in the root module), and you
+ // can also hardcode a specific target for an executable or library
+ // definition if desireable (e.g. firmware for embedded devices).
+ .target = target,
+ .optimize = optimize,
+ // List of modules available for import in source files part of the
+ // root module.
+ .imports = &.{},
+ }),
+ });
+
+ // This declares intent for the executable to be installed into the
+ // install prefix when running `zig build` (i.e. when executing the default
+ // step). By default the install prefix is `zig-out/` but can be overridden
+ // by passing `--prefix` or `-p`.
+ b.installArtifact(exe);
+
+ // This creates a top level step. Top level steps have a name and can be
+ // invoked by name when running `zig build` (e.g. `zig build run`).
+ // This will evaluate the `run` step rather than the default step.
+ // For a top level step to actually do something, it must depend on other
+ // steps (e.g. a Run step, as we will see in a moment).
+ const run_step = b.step("run", "Run the app");
+
+ // This creates a RunArtifact step in the build graph. A RunArtifact step
+ // invokes an executable compiled by Zig. Steps will only be executed by the
+ // runner if invoked directly by the user (in the case of top level steps)
+ // or if another step depends on it, so it's up to you to define when and
+ // how this Run step will be executed. In our case we want to run it when
+ // the user runs `zig build run`, so we create a dependency link.
+ const run_cmd = b.addRunArtifact(exe);
+ run_step.dependOn(&run_cmd.step);
+
+ // By making the run step depend on the default step, it will be run from the
+ // installation directory rather than directly from within the cache directory.
+ run_cmd.step.dependOn(b.getInstallStep());
+
+ // This allows the user to pass arguments to the application in the build
+ // command itself, like this: `zig build run -- arg1 arg2 etc`
+ if (b.args) |args| {
+ run_cmd.addArgs(args);
+ }
+
+ // Creates an executable that will run `test` blocks from the executable's
+ // root module. Note that test executables only test one module at a time,
+ // hence why we have to create two separate ones.
+ const exe_tests = b.addTest(.{
+ .root_module = exe.root_module,
+ });
+
+ // A run step that will run the second test executable.
+ const run_exe_tests = b.addRunArtifact(exe_tests);
+
+ // A top level step for running all tests. dependOn can be called multiple
+ // times and since the two run steps do not depend on one another, this will
+ // make the two of them run in parallel.
+ const test_step = b.step("test", "Run tests");
+ test_step.dependOn(&run_exe_tests.step);
+
+ // Just like flags, top level steps are also listed in the `--help` menu.
+ //
+ // The Zig build system is entirely implemented in userland, which means
+ // that it cannot hook into private compiler APIs. All compilation work
+ // orchestrated by the build system will result in other Zig compiler
+ // subcommands being invoked with the right flags defined. You can observe
+ // these invocations when one fails (or you pass a flag to increase
+ // verbosity) to validate assumptions and diagnose problems.
+ //
+ // Lastly, the Zig build system is relatively simple and self-contained,
+ // and reading its source code will allow you to master it.
+}
diff --git a/build.zig.zon b/build.zig.zon
new file mode 100644
index 0000000..4aa488b
--- /dev/null
+++ b/build.zig.zon
+.{
+ // This is the default name used by packages depending on this one. For
+ // example, when a user runs `zig fetch --save <url>`, this field is used
+ // as the key in the `dependencies` table. Although the user can choose a
+ // different name, most users will stick with this provided value.
+ //
+ // It is redundant to include "zig" in this name because it is already
+ // within the Zig package namespace.
+ .name = .khoe,
+ // This is a [Semantic Version](https://semver.org/).
+ // In a future version of Zig it will be used for package deduplication.
+ .version = "0.0.0",
+ // Together with name, this represents a globally unique package
+ // identifier. This field is generated by the Zig toolchain when the
+ // package is first created, and then *never changes*. This allows
+ // unambiguous detection of one package being an updated version of
+ // another.
+ //
+ // When forking a Zig project, this id should be regenerated (delete the
+ // field and run `zig build`) if the upstream project is still maintained.
+ // Otherwise, the fork is *hostile*, attempting to take control over the
+ // original project's identity. Thus it is recommended to leave the comment
+ // on the following line intact, so that it shows up in code reviews that
+ // modify the field.
+ .fingerprint = 0x541ad739cebf961f, // Changing this has security and trust implications.
+ // Tracks the earliest Zig version that the package considers to be a
+ // supported use case.
+ .minimum_zig_version = "0.16.0-dev.393+dd4be26f5",
+ // This field is optional.
+ // Each dependency must either provide a `url` and `hash`, or a `path`.
+ // `zig build --fetch` can be used to fetch all dependencies of a package, recursively.
+ // Once all dependencies are fetched, `zig build` no longer requires
+ // internet connectivity.
+ .dependencies = .{
+ // See `zig fetch --save <url>` for a command-line interface for adding dependencies.
+ //.example = .{
+ // // When updating this field to a new URL, be sure to delete the corresponding
+ // // `hash`, otherwise you are communicating that you expect to find the old hash at
+ // // the new URL. If the contents of a URL change this will result in a hash mismatch
+ // // which will prevent zig from using it.
+ // .url = "https://example.com/foo.tar.gz",
+ //
+ // // This is computed from the file contents of the directory of files that is
+ // // obtained after fetching `url` and applying the inclusion rules given by
+ // // `paths`.
+ // //
+ // // This field is the source of truth; packages do not come from a `url`; they
+ // // come from a `hash`. `url` is just one of many possible mirrors for how to
+ // // obtain a package matching this `hash`.
+ // //
+ // // Uses the [multihash](https://multiformats.io/multihash/) format.
+ // .hash = "...",
+ //
+ // // When this is provided, the package is found in a directory relative to the
+ // // build root. In this case the package's hash is irrelevant and therefore not
+ // // computed. This field and `url` are mutually exclusive.
+ // .path = "foo",
+ //
+ // // When this is set to `true`, a package is declared to be lazily
+ // // fetched. This makes the dependency only get fetched if it is
+ // // actually used.
+ // .lazy = false,
+ //},
+ },
+ // Specifies the set of files and directories that are included in this package.
+ // Only files and directories listed here are included in the `hash` that
+ // is computed for this package. Only files listed here will remain on disk
+ // when using the zig package manager. As a rule of thumb, one should list
+ // files required for compilation plus any license(s).
+ // Paths are relative to the build root. Use the empty string (`""`) to refer to
+ // the build root itself.
+ // A directory listed here means that all files within, recursively, are included.
+ .paths = .{
+ "build.zig",
+ "build.zig.zon",
+ "src",
+ // For example...
+ //"LICENSE",
+ //"README.md",
+ },
+}
diff --git a/src/main.zig b/src/main.zig
new file mode 100644
index 0000000..9c7174e
--- /dev/null
+++ b/src/main.zig
+const std = @import("std");
+
+pub fn main() !void {
+ // Prints to stderr, ignoring potential errors.
+ std.debug.print("All your {s} are belong to us.\n", .{"codebase"});
+}
+
+test "simple test" {
+ const gpa = std.testing.allocator;
+ var list: std.ArrayList(i32) = .empty;
+ defer list.deinit(gpa); // Try commenting this out and see if zig detects the memory leak!
+ try list.append(gpa, 42);
+ try std.testing.expectEqual(@as(i32, 42), list.pop());
+}
+
+test "fuzz example" {
+ const Context = struct {
+ fn testOne(context: @This(), input: []const u8) anyerror!void {
+ _ = context;
+ // Try passing `--fuzz` to `zig build test` and see if it manages to fail this test case!
+ try std.testing.expect(!std.mem.eql(u8, "canyoufindme", input));
+ }
+ };
+ try std.testing.fuzz(Context{}, Context.testOne, .{});
+}